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Abstract 
Context Anthropogenic activities alter natural 
habitats, with impacts on species that live in human-
modified systems. Often abrupt, anthropogenic influ-
ences not only alter the availability and distribution 
of suitable habitats for species, but also the ability of 
species to perceive variations within the landscape. 
Researchers studying the drivers of species distribu-
tion and behavior often use “static” land-cover maps 
as descriptors of habitat, which are most typically 
characterized at predictably cyclical seasonal scales. 
Changes that occur over shorter temporal scales are 
rarely quantified, and there is a lack of understanding 
of how landscapes change within seasons.

Objectives We propose a generic work-flow to iden-
tify the temporal scales at which changes in land-
cover patterns can be detected within a landscape.
Methods We use easily calculated landscape met-
rics such as patch area, inter-patch distance (ENN) 
and shape complexity (SHAPE), obtained using high-
resolution satellite imagery. We conducted pairwise 
comparisons for each metric and LULC class sepa-
rately, at temporal scales corresponding to 15, 30, 45 
and 60-day intervals, using a case study from central 
India.
Results We observed that changes in landscape 
structure and in land-cover classes can be detected 
even at a 15-day time period in human-dominated 
landscapes. In our case-study, agricultural fallows 
showed the highest proportion of change-points. The 
grassland class was the most stable across metrics and 
time-scales. Among metrics, SHAPE was the most 
stable and ENN was the most dynamic, indicating 
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that while patch structure remained relatively stable, 
patch configuration changed more rapidly.
Conclusions We suggest that when studying animal 
resource use and movement, particularly in anthropo-
genically modified systems, matching the temporal 
resolution of landscape-level data to animal move-
ment data is critical, as broad-scale data may miss 
key triggers of animal response.

Keywords Animal movement · Landscape metrics · 
Patch dynamics · Temporal scales · Remote sensing · 
Landuse/landcover classes · Movement ecology

Introduction

Human activities such as agriculture, urbanization, 
industrialization and energy production are major 
drivers of land-use and land-cover (LULC) change 
globally. These anthropogenic footprints alter the 
availability and form of natural habitats, and directly 
impact almost all types of life on Earth at multiple 
spatial and temporal scales. Anthropogenic change 
to the environment can often occur in abrupt ways. 
For e.g., new buildings can be constructed within 
months, and monoculture of crops convert large land 
areas within weeks. Such changes to the landscape 
not only alter the availability and distribution of suit-
able habitats for species, but also their ability to pre-
dict changes in the landscape. Many species, how-
ever, seem to continue to persist in human-modified 
landscapes, despite continuous anthropogenic activity 
(Verdade et al. 2014; Chapron et al. 2014; Carter and 
Linnell 2016; Katna et  al. 2022). The responses of 
such species to anthropogenic factors can also occur 
at multiple spatial and temporal scales, depending 
on the distribution of preferred resources (Cagnacci 
et al. 2010; Dechen Quinn et al. 2013; Northrup et al. 
2016), and the scale at which these animals perceive 
their surroundings (González-Megías et al. 2007).

Understanding the factors and scales that drive 
animal responses to environmental variation has been 
a central theme in animal ecology (Cagnacci et  al. 
2010), and is the basis for the field of movement ecol-
ogy (Nathan et al. 2008). One of the four components 
of the movement ecology framework is the influence 
of environmental factors, or external factors, on the 
movement and resource use of individuals. Land-
cover patterns within an individual’s home range are 

intrinsically linked to the ecological processes taking 
place within a landscape (Uuemaa et al. 2013). Spa-
tially, resource distribution (e.g., forage and cover) 
arising due to land-cover patterns has been found 
to determine habitat use by species. For example, 
in central New York State, USA, white-tailed deer 
select areas with highly aggregated patches of suit-
able land-cover types, and show smaller home range 
sizes, even in highly heterogeneous regions, provided 
the suitable landcover patches were accessible (Quinn 
et al. 2013). Changes in naturally occurring temporal 
cycles, such as seasons, intersect with the activity of 
humans to further shift the landscape for species. For 
example, in an agriculture matrix in North Carolina, 
USA, coyotes show seasonal variations in habitat 
use, where they use agricultural fields throughout the 
day in summer months but only during the night in 
winters, a pattern primarily associated with the avail-
ability of pre-harvest resting sites (Byrne et al. 2014). 
The effects of both spatial and temporal variations in 
LULC patterns propagate across trophic levels (Kil-
lengreen et al. 2011), and can either have short-term 
impacts that are cyclical, or long term impacts that 
are more permanent (Lambin et al. 2000; Gurarie and 
Ovaskainen 2011).

Landscape structure and LULC patterns are usu-
ally quantified using data obtained from remotely 
sensed satellite imagery (Fichera et  al. 2012), often 
through the use of ‘landscape metrics’ (Cushman 
et  al. 2008; Hesselbarth et  al. 2019). These metrics 
are defined based on the spatial arrangement of pixels 
or LULC classes, and can be quantified at the patch, 
class, or landscape level (Narumalani et  al. 2004). 
In general, metrics related to patch size, shape, edge 
and spatial aggregation have been most widely used 
in studies examining spatial and temporal variations 
in landscape structure and their effects on biodiver-
sity (Kie et al. 2002; Lausch 2002; Bielsa et al. 2005). 
For example, the metric ‘Euclidean nearest neighbor 
distance’, indicates the proximity between patches of 
the same landcover class (Cushman et al. 2008). This 
could be particularly important when studying move-
ment of habitat specialists. Patch size (or mean patch 
area per landcover class) is another widely used met-
ric for community-level ecological studies because 
it directly indicates the availability of the landcover 
type for animals that depend on it (Narumalani et al. 
2004).
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Researchers interested in the drivers of animal 
behavior have often used temporally “static” maps 
of LULC as descriptors of habitat. These LULC 
maps are generally derived at annual or seasonal 
scales, and may be too coarse to capture short-term 
changes, particularly in rapidly changing landscapes 
(Meentemeyer and Box 1987). Changes that occur 
over shorter temporal scales are rarely quantified, 
and there is a lack of understanding of how landscape 
changes within seasons influence animal distribution 
(Bertrand et  al. 2016). Vegetation structure within a 
landscape can change at intervals shorter than typ-
ically-defined seasonal cycles, particularly in more 
heterogeneous ecosystems, such as human-dominated 
landscapes characterized by a mosaic of natural and 
anthropogenic LULC types (Bertrand et  al. 2016). 
When using highly dynamic animal movement data 
with relatively broad-scale data on landscape struc-
ture, variations in movement or resource use patterns 
will often not match the temporal scales of change of 
the external factors being studied, leading to a gap in 
understanding the actual processes that may be driv-
ing these animal movement decisions. For example, 
at the shortest temporal scales, resource use and the 
corresponding movement patterns are an immedi-
ate response to changes in resource or risk within 
the individual home range (Gurarie and Ovaskainen 
2011). Longer time-scales are more suited to study-
ing migrations or broader patterns in home-range 
size or resource utilization of individuals (Ullmann 
et al. 2018). Furthermore, although some studies use 
fine-scale temporal data for environmental correlates 
(May et al. 2010; Moorter et al. 2016; Northrup et al. 
2016), there is seldom a validation to determine if the 
environmental variation is actually detectable, par-
ticularly for highly dynamic human-dominated land-
scapes. Developing an understanding of the complex 
interactions between landscape structure and animal 
resource use is important when assessing how this 
landscape heterogeneity (also often referred to as 
fragmentation), particularly in human-dominated 
landscapes, affects animal movements (May et  al. 
2010).

As the effects of scale and degree of heterogeneity 
within a landscape varies with species (May et al. 2010) 
and also the behavior being studied, in landscapes that 
witness higher levels of temporal heterogeneity, such as 
human-dominated landscapes, activities such as crop 
growth, harvesting and sowing lead to rapid changes 

in resource distribution within seasons. Such changes 
directly impact species that persist in these areas. This 
temporal aspect of variation in habitat due to underly-
ing anthropogenically-influenced vegetation dynamics 
has often been neglected in landscape ecology (Vasseur 
et al. 2013) as well as in animal ecology (Mueller et al. 
2011). When examining the effects of LULC patterns 
on animal movement, it is important to first identify the 
relevant scales at which temporal changes occur in the 
landscape (May et al. 2010; Benson et al. 2015).

Utilising commonly used and easily calculated land-
scape metrics, we propose a generic work-flow to iden-
tify the temporal scales at which detectable changes 
in LULC patterns occur within a landscape, and use a 
specific set of LULC classes and metrics as an exam-
ple. We emphasize that the selection of these scales 
should correspond to the species being studied and the 
specific objectives, along with the vegetation or habi-
tat type. In order to examine patterns across a range of 
LULC classes, we selected a landscape that consists 
of a matrix of native and anthropogenically modified 
LULC classes. We expected that LULC patterns within 
a landscape will change at scales that are much shorter 
than seasonal scales and will vary with the vegeta-
tion type and other environmental or economic condi-
tions. Using classifications of high resolution satellite 
imagery at different interval periods, ranging from 15 
to 60-day cycles, we calculated landscape metrics and 
the frequency of changes in landscape metrics describ-
ing LULC. We expected that the more natural patches 
of the landscape (e.g., native savannah) would be more 
stable across time with detectable changes at the sea-
sonal intervals, whereas the anthropogenic LULC 
classes (particularly agriculture) would show the high-
est variation at finer temporal scales. Identifying the 
scales at which LULC patterns change within a het-
erogeneous landscape allows for a better matching of 
fine-scaled animal movement data to determine how 
animals are responding to such changes.

Methods

Study site

This study site is located in the rural and peri-urban 
areas of Baramati, Daund and Indapur sub-divisions 
(Talukas) of Pune District, Maharashtra in West-Cen-
tral India (Katna et  al. 2022). A study area of ~611 
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 km2 in this landscape was selected as it has a mix of 
naturally occurring native savannah habitats and sev-
eral anthropogenic LULC classes such as agriculture, 
poultry farms, linear infrastructure, managed planta-
tions, and industries. This area is also the focus of a 
multi-species movement ecology project (Katna et al. 
2022).

For assessing the temporal scales of changes in 
LULC patterns, we selected the period from Novem-
ber 2017 to May 2019. We obtained one high-reso-
lution (10 m) satellite imagery (Sentinel 2 -https:// 
www. senti nel- hub. com/ explo re/ eobro wser, last 
accessed 31/10/2020) for every 15-day period. For 
periods with extensive cloud-cover, cloud-free images 
for the nearest date were considered. There were sev-
eral 15-day intervals, particularly during the monsoon 
months, where no cloud-free images were available, 
and these account for some gaps in the data. Overall, 
we used a total of 29 images for the study period.

Image classification

The image classification process followed the work-
flow described in Fig.  1(Part A). In order to obtain 
the patch-level landscape metrics, we first con-
ducted image classification using object-based image 

analysis under the ‘segmentation’ module of TerrSet 
18.31 (Eastman 2015). We included the NDVI band 
during the classification stage (Liu and Yang 2015), 
along with the green, red and NIR bands, to improve 
the object segmentation process.

We assigned six categories to LULC classes 
(water, built, agriculture, fallow, grassland and plan-
tation), and combined irrigated and rainfed crops 
into one ‘agriculture’ class as classifying different 
agriculture types was outside the scope of this study. 
The ‘plantation’ class consisted of tree plantations 
managed by the state forest department. We con-
ducted field-verifications of 80 randomly-generated 
ground control points within the study area bound-
ary to evaluate the accuracy of the classified images. 
Once generated, the same ground control points were 
used for all subsequent field-verifications. As visiting 
these ground control points was a very time-intensive 
exercise, and was also limited by weather conditions 
and access to the locations, this could only be done 
in specific months. However, we ensured that the 
field-verifications were distributed across the study 
duration. The accuracy assessment was then con-
ducted using the ERRMAT module of TerrSet 18.31, 
which generates an error matrix using user’s and 
producer’s accuracies for each LULC class from the 

Fig. 1   A generic workflow 
to identify the temporal 
scales at which changes 
occur in the landscape 
structure. The left column 
corresponds to image 
classification, and the right 
column corresponds to the 
analyses of the landscape 
metrics. Similar to the band 
selection process during 
image pre-processing, the 
level of landcover clas-
sification and the choice of 
landscape metrics would 
vary based on study objec-
tives and region
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classified and ground-truthed values corresponding to 
the ground control points. In addition to the accuracy 
assessment, the Relative Error of Area (REA) was 
calculated (Shao and Wu 2008) for agriculture, fal-
low and grassland classes. The REA is an index that 
corresponds to the uncertainty in LULC classification 
using remotely-sensed imagery (Shao et al. 2003). It 
combines the user’s, producer’s and overall accuracy 
to provide a robust estimate of the degree of over- or 
under-estimation of the LULC classes.

Data analyses

In order to identify the number of instances where 
changes occurred in landscape metrics between two 
subsequent images, we conducted pairwise com-
parisons for each metric and LULC class separately 
(Fig.  1Part B). We assigned each image a unique 
code. Among the six LULC classes, we focused on 
agriculture, fallow and grassland in this study, as 
these are expected to be the most dynamic among 
these, and constitute ~91% of the study area. We then 
calculated patch-level landscape metrics for each 
LULC class and image (Cushman et al. 2008; Lech-
ner et al. 2013). As metrics under similar categories 
are often highly correlated to each other (Bolliger 
et  al. 2007), we selected one metric each under the 
categories of ‘area/density/edge’ (patch area, PA), 
‘isolation/proximity’ (Euclidean nearest neighbor, 
ENN), and ‘shape complexity’ (SHAPE). Isolation 
and proximity indices also offer information on patch 
connectivity, and thus, ‘connectivity’ indices were 
not obtained separately.

Thus, by using PA, ENN and SHAPE, we were 
able to obtain information on patch sizes, the distri-
bution of patches within the landscapes and the com-
plexity for each patch. These metrics were obtained 
using the “landscapemetrics” package (Hesselbarth 
et  al. 2019) in R Studio 1.3 (R Core Team 2019). 
After obtaining the landscape metrics for the three 
LULC classes for the 29 images, we created three 
datasets, one for each LULC class, with each dataset 
containing patch-level metrics and the correspond-
ing unique image code. Using the unique code as the 
grouping variable, we conducted pairwise Wilcoxon 
tests on the three LULC classes, using Bonferroni 
correction to control for the group-wise error rate 
(Kie et al. 2002). We conducted these tests at tempo-
ral scales corresponding to 15-, 30-, 45- and 60-day 

intervals, and examined the number of times signifi-
cant changes occurred for each class and temporal 
scale. Each pair, where the difference in the metrics 
of two consecutive images was statistically signifi-
cant, was termed as a ‘change-point’. Both the num-
ber and proportions of change-points were obtained.

Results

LULC classification

Approximately 60% of the study area consisted of 
LULC classes that were extensively managed by 
humans. Across the study duration, the propor-
tions (across 29 images, corresponding to the period 
between November 2017 and May 2019) of agricul-
ture (0.11–0.28), fallow (0.23–0.42) and grassland 
(0.32–0.43) did not vary substantially (Fig. 2).

Accuracy

Using object-based image classification methods, we 
were able to accurately differentiate between LULC 
classes in the study area, as evidenced by the user’s 
and producer’s accuracy values (overall mean pro-
ducer’s accuracy of 85% and an overall mean user’s 
accuracy of 87%). While this was true for a major-
ity of the images, there was some mixing of patches 
between fallow and grassland, owing to similarities in 
spectral signatures during these periods. This resulted 
in an overall lower producer’s accuracy for the fallow 
class, as some fallow patches were classified under 
grassland. Despite this, the lowest producer’s accu-
racy for fallow was 0.68, which is expected consid-
ering the actual intermixing of fallow and grassland 
patches within the study area. The mean producer’s 
accuracies for agriculture, fallow and grasslands were 
85% ± 7%, 76% ± 8% and 93% ± 3%, respectively, 
whereas the mean user’s accuracies were 88% ± 11%, 
88% ± 4%, 84% ± 3%, respectively. The mean REA 
value for the grassland class was positive (10.69) and 
those of the agriculture and fallow classes were nega-
tive (-2.508 and -18.285, respectively), indicating that 
the grassland class was slightly overestimated while 
the other two classes were slightly underestimated in 
their area.
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Identifying temporal scales of change

We identified the number of change-points for the 
selected metrics (and LULC classes and their corre-
sponding proportions (Fig. 3). Proportion of change-
points for the anthropogenic LULC classes ranged 
between 11% and 46%. At the shortest (15-day) 

time-scale, fallow had the highest number and pro-
portion of change-points for the PA and ENN metrics 
(Fig.  3). For SHAPE, at the 15-day scale, the num-
ber of change-points was highest for agriculture, fol-
lowed by fallow and then grassland (Fig.  3). Thus, 
our results showed that change-points can occur in 
the LULC classes even at the 15-day scale.

Fig. 2  Proportions 
(mean ± SE) of the six 
LULC classes in the study 
area over an 18-month 
period from November 
2017 to May 2019

Fig. 3  Proportion of 
change-points for the three 
LULC classes at different 
temporal scales. Grassland 
was the most stable LULC 
class with fewest changes, 
and fallow showed the most 
changes. Among landscape 
metrics, ENN captured 
more changes than PA and 
SHAPE. Numbers within 
each bar denote the number 
of change-point
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At the 30-day scale, fallow had the highest number 
and proportion of change-points, across all three land-
scape metrics. The grassland class showed the low-
est number of change-points at the 30-day scale for 
ENN and SHAPE, but showed an equal proportion of 
change-points as that for agriculture in PA (Fig. 3).

However, a different pattern was observed at the 
45-day scale. The number and proportions of change-
points were similar for all LULC classes in ENN 
(Fig.  3), whereas agriculture and grassland had the 
same number of change-points for PA and SHAPE, 
which were lower than those of fallow.

At the longest temporal scale that we analyzed (60-
day interval), the grassland class showed the lowest 
numbers and proportion of change-points across all 
three metrics and SHAPE had the lowest proportion 
of change-points among the three metrics and LULC 
classes. It is important to note that these change 
points did not occur together in time (see Supplemen-
tary File 1), i.e., the significant pairs between each 
subsequent image did not occur together for the three 
LULC classes across the three metrics.

Discussion

Advances in satellite and remote sensing technolo-
gies have enabled researchers to now obtain data at 
very high temporal resolutions (e.g., Sentinel-2 has a 
rotation period of 10 days). Recent developments in 
analytical tools for satellite imageries (GEE, packages 
in R, proprietary software such as TerrSet) have also 
eased the processing effort required to obtain fine-
scale data on environmental parameters and landscape 
structure from remotely-sensed images. In this study, 
we provide a generic work-flow (Fig.  1) to exam-
ine changes in landscape structure across different 
temporal scales. Using standard landscape metrics, 
our aim was to identify the shortest scale at which 
changes in the landscape structure could be detected. 
Our study site, characterized by a matrix of human 
and natural landcover patches, serves as a challeng-
ing test case to examine temporal variations in LULC 
patterns. Human-dominated landscapes undergo rapid 
temporal variations in LULC patterns due to activi-
ties such as agriculture. Variations in LULC patterns 
result from the interplay between environmental, 
biotic, economic, political and social factors (Turner 
1989). Thus, accurately identifying LULC patterns 

and the scales at which changes occur is important 
when studying the patterns of habitat utilization by 
species present in the landscape (Shao and Wu 2008). 
As expected, the proportion of change-points and the 
period of their occurrence varied between each LULC 
class and metric. The generic workflow proposed as a 
part of this study is targeted towards identifying the 
temporal scales at which changes in landscape struc-
ture, particularly in heterogeneous systems (mostly 
human-dominated landscapes), can be detected. It 
should be noted that the same process can be applied 
to various landscapes.

Overall, the proportion of change-points tended to 
increase with increasing temporal scales across met-
rics and LULC classes. We found that the likelihood 
of detecting landscape change at the 60-day scale 
was higher than at other scales, which was expected 
given that this scale, and scales larger than 60 days, 
correspond to seasonal changes. Seasonal changes 
in LULC patterns and their interactions with eco-
logical processes are well-documented and most 
readily incorporated into ecological studies (Katna 
et  al. 2022). However, for actively managed land 
cover types, changes in the metrics of LULC were 
also detected at the 15- and 30-day scales. Human-
dominated landscapes often undergo variations in 
vegetation structure more rapidly than relatively 
less-disturbed ecosystems (Fischer and Lindenmayer 
2007), where the matrix is expected to remain stable 
at shorter temporal scales.

Given the diversity of crop types, cropping cycles 
and variation in crop growth rates we would normally 
expect the agriculture class to be the most dynamic. 
However, due to high computational and time require-
ments, we had clubbed various crop types in to one 
omnibus agriculture class. Likely because of this, the 
fallow class was the most dynamic, with the highest 
number and proportions of change-points at almost 
every time-scale (Fig. 3). This could possibly also be 
due to frequent shifts of an LULC patch between fal-
low and agriculture, as our study area also has sea-
sonal crops and to a minor extent because of classi-
fication accuracy. The higher values for ENN and PA 
for fallow also indicate that fallow land parcels may 
be used for agriculture at specific weather conditions/
seasons and to varying extents, i.e., converting only a 
proportion of a fallow patch to agriculture. Addition-
ally, some land parcels that may have been left fallow 
for several years may have been re-used for cropping 
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during the study period (this was also observed by 
AK and ATV during fieldwork), resulting in fre-
quent changes to the landscape structure. By con-
trast, grasslands are not actively managed habitats, 
and thus showed the highest stability compared to 
agriculture and fallow landscapes. The proportion of 
change-points for grassland increased with decreas-
ing temporal resolution for all three metrics, except 
at the 45-day scale for ENN. Being the most stable 
class, this was expected as changes in such LULC 
classes will be visible only at relatively longer tem-
poral scales (e.g., seasonal). Even in cases where the 
proportions of change-points were similar between 
LULC classes for a particular metric, the change-
points across LULC classes did not occur at the same 
points in time, indicating that different classes follow 
different variation patterns across time.

Landscape structure can be affected by a combina-
tion of anthropogenic (agricultural activities, graz-
ing, land management, developmental activities) 
and natural factors (climatic events, weather, vegeta-
tion growth cycles) (Lausch et al. 2015; Kumar et al. 
2018). The patterns observed in our study site could 
primarily be due to differences in plant growth rates 
within crops and between crops and natural vegeta-
tion and differences in land management. This obser-
vation is important as it suggests that because LULC 
types vary at their individual pace, the overall land-
scape is in a state of constant change in terms of 
landscape structure. These effects can vary with the 
LULC class and metric selected for analysis, resulting 
in different rates and timing of changes across classes 
on the same landscape matrix. Variable patterns of 
LULC change can impact space use or movement 
decisions by species that use a combination of classes 
for different purposes (e.g., resting or foraging) or for 
different life stages (Benton et al. 2003).

To a smaller degree, the interpretation of these 
results would also depend on classification accuracy, 
which is affected by several factors, including the 
landscape pattern and the algorithms used (Lechner 
et  al. 2013). The uncertainty, or error, in classifica-
tion increases with an increase in landscape hetero-
geneity, and it is often very difficult to achieve a very 
high classification accuracy (< 90%) in heterogene-
ous ecosystems (Lechner et  al. 2013). Therefore, in 
such cases, it is important to be aware of the limita-
tions of the classification process itself, and to reduce 
the error to the extent possible. In our case-study, the 

REA values showed that grassland area was overesti-
mated in general. Further improving our classification 
accuracy would have therefore resulted in a decrease 
in the grassland area (the most stable class) and an 
increase in the more dynamic agriculture and fallow 
classes, which would have resulted in an increase in 
areas with a higher frequency of change-points. Thus, 
indices such as REA can be used to understand the 
extent of uncertainty when using remotely sensed 
imagery to quantify landscape structure.

The temporal trends of change also varied between 
the landscape metric selected, which collectively 
describe very different characteristics of the land-
scape. We found SHAPE to be the most stable of 
the three metrics, showing the fewest changes across 
different time intervals, whereas ENN showed the 
most changes. PA was the only metric that showed 
a consistent trend across all LULC classes with an 
increasing proportion of change-points with decreas-
ing temporal resolution, whereas SHAPE showed 
no particular trend among the three LULC classes. 
This indicates that patch sizes and shapes change 
at relatively longer temporal-scales, but inter-patch 
distances show greater changes at shorter temporal 
scales. For animals on this landscape, such a land-
cover change pattern indicates that although the avail-
ability of resources may be stable, connectivity of 
suitable patches may affect access to these resources.

The advancement in animal tracking technologies 
has meant that animal movement data is now avail-
able at temporal resolution as fine as 1 Hz, yet the 
underlying environmental and landscape variables are 
often measured at much longer temporal scales, typi-
cally months (Bevanda et al. 2015). For species that 
respond to changes in landscape structure at much 
finer temporal scales, using landscape structure data 
at substantially coarser scales would not adequately 
capture the potential drivers and predictors of shifts 
in animal movement. For example, when examining 
home-ranges of the mesocarnivore guild in central 
India, we found that seasonal scales were not suf-
ficient in identifying variations in resource selection 
(Katna et  al. 2022). Additionally, the results of this 
study showed that across LULC types and metrics 
the possibility of detecting a change at a 60-day scale 
is expectedly high, but changes were also detected 
at 15-day scales. Therefore, it is important to match 
the temporal scales of the environmental factors with 
that of the movement data in order to develop a more 
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accurate understanding of the ecology of species 
inhabiting such landscapes.

Landscape structure is strongly linked to the 
underlying ecological process and species survival 
(Lausch et al. 2015), and rapid changes in landscape 
structure have a more profound impact on resource 
availability within human-dominated landscapes 
than in more homogeneous or contiguous landscapes. 
Therefore, understanding how rapidly changes occur 
in human-dominated landscapes becomes important, 
as an increasing number of species would experience 
fast, and often unpredictable variations in resource 
availability. Frequent changes to inter-patch distance 
also increase movement costs (e.g. energy, time, risk) 
for animals that may need to travel farther to access 
resources (Baguette and Dyck 2007; Fahrig 2007). 
Therefore, evaluating metrics that correspond to the 
distribution and size of specific LULC classes is 
important for studies that incorporate the effects of 
habitat heterogeneity on fauna.

When studying landscape level drivers of ani-
mal space use and movement, particularly in more 
heterogeneous systems, matching the temporal 
scales of the landscape predictors to the animal 
space-use data is most informative to understand 
variations in resource use and behavior. For exam-
ple, when using telemetry data of animals, we sug-
gest first identifying the temporal scales of varia-
tions in animal movement or resource use patterns 
(e.g., using a change point analysis on movement 
data, Gurarie et  al. 2009) and then correspond-
ingly matching the temporal scale for the landscape 
structure. While this may not always be possible, as 
conducting analyses over such fine temporal scales 
would substantially increase the computation power 
and time required, it would be good to conduct the 
analysis suggested in this paper, and evaluate mul-
tiple temporal scales to understand how changes 
are occurring within the landscape. Though the 
use of metrics often makes quantifying landscape 
structure easier, selecting the appropriate met-
rics is often more nuanced (Neel et  al. 2004). Our 
results showed that the proportion and occurrence 
of change-points varied with the metric selected and 
the LULC class. Thus, ecological studies using data 
on landscape structure may also need to account for 
the differences between LULC classes and accord-
ingly select a few metrics to be examined (Cushman 
et  al. 2008). Finally, we used the visible spectra 

from Sentinel 2 to obtain detailed LULC classifica-
tion, but synthetic aperture radar data can also be 
combined with visible imagery for the same pur-
pose (Lopes et  al. 2020; Samrat et  al. 2021). The 
methodological approach we provide in our study 
(Fig. 1) can be used as a generic approach, and the 
parameters under each sub-section would need to be 
customized based on the study objectives and char-
acteristics (Neel et  al. 2004). However, we expect 
that changes in landscape structure in more homog-
enous landscapes will occur at relatively broader 
temporal scales for the dominant LULC classes.

In conclusion, when studying ecological processes, 
irrespective of the landscape, the appropriate tem-
poral scales depend on the specific objectives of the 
study, species, and type of movement (e.g., migra-
tory vs. non-migratory) (van Beest et al. 2011). While 
some habitat types experience high spatio-temporal 
variations in productivity and patch configurations, 
other landcover types remain relatively homogenous 
over time. Thus, identifying the scales of change in 
landscape structure is important for the management 
of landscapes and biodiversity, as characterization of 
a landscape’s patch dynamics can provide informa-
tion on the organization and stability of landscape 
composition and configuration (Olsen et al. 2005).
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